
Project AN.ON
Development Environment

Kuno G. Grün
Rolf Wendolsky
Derek Daniel
Elmar Schraml

Version: 3.10

from: 6. November 2007

Projekt AN.ON
Hannes Federrath, Universität Regensburg
Stefan Köpsell, TU Dresden

http://www.anon-online.de

http://www.anon-online.de/

Project AN.ON
Development Environment

Summary
This document describes how to set up and use the recommended development environ-
ment for the AN.ON project.

Document history
version status date authors description
0.01 in progress 21.03.04 Rolf Wendolsky First version
0.02 in progress 23.03.04 Rolf Wendolsky Inserted chapter „IDEs“
0.03 in progress 24.03.04 Rolf Wendolsky Finished „IDEs“
0.04 in progress 25.03.04 Rolf Wendolsky Added 'Compilation and in-

stallation of external libraries'
Index for 'Test environment'

0.05 in progress 30.03.04 Rolf Wendolsky Added 'CppUnit' configuration
chapter

0.06 in progress 31.03.04 Rolf Wendolsky Corrections in 'CppUnit'
0.07 in progress 08.04.04 Rolf Wendolsky Added chapter about CVS
0.08 in progress

08.04.04
Rolf Wendolsky Added 'Testconfiguration

mixproxy'
0.09 in progress 15.04.04 Rolf Wendolsky Different corrections in 'Test

environment' and 'Testconfig-
uration'

0.10 in progress 09.09.04 Rolf Wendolsky Different corrections
1.00 released 25.11.04 Rolf Wendolsky New libraries added
1.01 released 01.08.05 Rolf Wendolsky JDKs updated
2.0alpha in progress 04.08.05 Kuno G. Gruen First translation into English
2.0beta in progress 15.09.05 Kuno G. Gruen Added configurations for

Visual Studio .NET 2003
Eclipse 3.1; different updates
and additions

2.01 in progress 18.09.05 Rolf Wendolsky Fixed some errors
2.02 in progress 18.09.05 Kuno G. Gruen Fixes some errors
2.03 in progress 17.10.05 Derek Daniel Corrected english version
3.00 released 17.10.05 Rolf Wendolsky Final review
3.01 released 22.11.05 Rolf Wendolsky Version corrected
3.02 released 22.12.05 Kuno G. Gruen Version corrected / updated
3.03 released 16.01.06 Rolf Wendolsky Corrected MixConfig infos
3.04 released 26.01.06 Jonas Schießl Added solution for compiling

proxytest under Windows
using Eclipse and Cygwin

3.05 in progress 09.02.06 Jonas Schießl Description of FatJar plugin.
3.06 released 06.04.06 Rolf Wendolsky Major corrections and reinte-

gration of old german JBuilder
instructions

3.07 released 09.05.06 Jonas Schießl How to convert linebreaks
3.08 released 28.02.07 Elmar Schraml translated Jbuilder instructi-

ons, added payment instande

Version: 3.10 Development Environment _ v310.odt Page: 2

Project AN.ON
Development Environment

installation and configuration
3.09 released 14.03.07 Elmar Schraml updated database installation;

added AI configuration for
prepaid system

3.10 06.11.07 Elmar Schraml merged previous additions
and fixes to AI/PIG installation

Version: 3.10 Development Environment _ v310.odt Page: 3

Project AN.ON
Development Environment

Table of Contents
1 Introduction...6

2 Components..7
2.1 Mix (CVS-module: proxytest).. 7

2.2 JAP client (CVS-module: Jap)... 7

2.3 InfoService (CVS-module: Jap)... 7

2.4 Payment Instance (CVS-module: Jap).. 7

2.5 MixConfig tool (CVS-module: MixConfig).. 7

2.6 Java Mix (CVS-module: JavaMix)... 7

2.7 Anon library .. 7

3 External libraries...8
3.1 Java library installation.. 9

3.2 C++ library installation on Linux.. 9

3.3 C++ library installation on Windows.. 10

4 Compiler...15
4.1 C++... 15

4.2 Java.. 15

5 IDEs..16
5.1 Specific development requirements on Microsoft Windows.. 16

5.2 Eclipse IDE... 17

5.3 Borland JBuilder IDE... 24

6 Doxygen...30
6.1 Download.. 30

6.2 Installation... 30

7 Unittest environments..31
7.1 JUnit.. 31

7.2 CppUnit... 31

8 Running the tests..31
8.1 Architecture... 31

8.2 Configuration.. 32

8.3 Start.. 34

8.4 Test... 35

9 Payment Instance Setup..36

Version: 3.10 Development Environment _ v310.odt Page: 4

Project AN.ON
Development Environment

9.1 System requirements:... 36

9.2 You will need:.. 36

9.3 Creating the Jar file... 36

9.4 Creating the key file and certificate... 36

9.5 Creating the Postgres database.. 36

9.6 Creating the JPI configuration... 37

9.7 Starting the JPI... 39

10 Accounting Instance Setup..40
10.1 System Requirements... 40

10.2 You will need... 40

10.3 Compiling the first Mix... 40

10.4 Setting up the database.. 40

10.5 Payment Configuration.. 41

10.6 Price Certificates... 42

11 Payment Instance GUI (PIG) setup..43
11.1 Ruby... 43

11.2 Rails.. 43

11.3 Database configuration... 43

11.4 Plugins.. 44

11.5 Java Bridge... 44

11.6 Server... 44

12 Bibliography..46

Version: 3.10 Development Environment _ v310.odt Page: 5

Project AN.ON
Development Environment

1 Introduction
This document is an introduction to the development tools and code base of the AN.ON
project. We recommend some IDEs and give some help on their installation and usage.
Configuration files for the IDEs are kept up to date by our project maintainer. The pro-
posed IDEs are platform neutral and can be used with Windows, Linux and MacOS.
AN.ON itself is split into Java and C++ components that can be compiled and run on any
of the mentioned systems.

Using Linux, JBuilder X/2005 is recommended for Java, but both programming languages
(Java and C++) can be covered with Eclipse 3.1. The project settings for C++ are based
on the Unix-native GNU make in combination with CDT 3.0.0.

Using Windows, you will need either JBuilder X/2005 (recommended) or Eclipse 3.1 for
Java development. C++ development may be done with Microsoft Visual Studio .NET
2003. Old project settings for C++ Builder X are provided, too, but will be replaced by an
Eclipse 3.1 configuration in the future.

Using MacOS X, JBuilder is being used for Java development. For C++, Eclipse 3.1
should work, although it has not yet been tested. It may cause some difficulties with the
make process.

Once again: you are welcome to develop with any IDE you like. Just keep in mind that you
may have to invest some time for generating the project settings.

Windows
(in any version NT / 2000 / XP)

Java IDE
C++ IDE

JBuilderX / Eclipse 3.1
Eclipse3.1 + Cygwin
Visual Studio 2003
C++ Builder X

SuSE Linux 9.3
or any other >= kernel 2.4

Java IDE
C++ IDE

JBuilder X / Eclipse 3.1
Eclipse 3.1 & CDT 3.0.0

MacOS X
(not shown in this document)

Java

C++

Eclipse 3.1
JBuilder X
Eclipse 3.1 & CDT 3.0.0

The IDEs have been tested with Windows XP Professional and SuSE Linux 9.3.

Version: 3.10 Development Environment _ v310.odt Page: 6

Project AN.ON
Development Environment

2 Components
2.1 Mix (CVS-module: proxytest)

Mix is the virtual core of AN.ON. With a Mix, the process of anonymization is done. Al-
though the CVS component's name is proxytest (due to historic reasons), the executable
program is named Mix. Since this is a development documentation, we will normally refer
to it as proxytest. Due to past performance reasons, proxytest is written in C++.

2.2 JAP client (CVS-module: Jap)

The Jap client is used as local proxy that manages the communication with Mix cascades
and Infoservices. The client has to run on as many platforms as possible, so it is written as
a Java application. It uses an old 1.1.8 Java runtime environment for this reason as well.
This runtime version is also available on older operating systems (e.g. MacOS 9 and
OS/2).

2.3 InfoService (CVS-module: Jap)

The Infoservice is needed to register new Mixes and to connect JAP to existing Mix cas-
cades. It also enables JAP to find the IP addresses of active Mix cascades. Infoservice is
also written completely in Java.

2.4 Payment Instance (CVS-module: Jap)

The Payment Instance administrates user accounts for the AN.ON payment system.

2.5 MixConfig tool (CVS-module: MixConfig)

With this Java application, a configuration file for a Mix can be created and maintained. It
is also used to configure the Mix-on-CD live-CD. Again, this tool is written as a Java appli-
cation.

2.6 Java Mix (CVS-module: JavaMix)

An experimental Mix implementation.

2.7 Anon library

This Java library contains all classes that are needed by JAP, Infoservice and Mixconfig.
Changes to this central library potentially affect the other components and have to be test-
ed with each of them.

Version: 3.10 Development Environment _ v310.odt Page: 7

Project AN.ON
Development Environment

3 External libraries
Each of the mentioned components needs some external libraries that are not part of the
AN.ON project. The library versions given here have been tested with each AN.ON com-
ponent. Older or newer library versions may work also but might cause problems.

Abbreviations for the libraries are used in the IDE config files. Note that the reference
names are case sensitive! Keeping these names is recommended because they are used
throughout the project. Getting the sources again from CVS will overwrite a different name
resolution.

IDE reference library used for
Java:
ApacheFTPClient ApacheFTPClient.jar FTP-client libraries
ApacheBZIP2 ApacheBzip2.jar Bzip2 libraries
Apache XML-RPC apache-xmlrpc-1.1.jar Apache

XML-RPC libraries
BouncyCastleLightForJAP

BouncyCastleLightForMixConfig

BouncyCastleLightForJAP.jar

BouncyCastleLightForMixConfig.jar
crypto libraries

crypto libraries
http http.jar HTTP-Client libraries
Jama Jama.jar matrices libraries
JavaBeans Activation Framework activation.jar needed by JavaMail
JavaMail mail.jar blocking resistance
JAI 1.1.2 jai_core.jar blocking resistance
junitx junitx-5.1.jar Unittests for protected

and private members
Log4j log4j.jar Logging library
mac MRJClasses.zip MRJ library for Macintosh
Swing swingall.jar exclusively for Java 1.1;

installed in Java 1.2
XML-1.0 xml.jarXML related functions XML related functions
XML-1.1 xml-1.1.jar XML related functions
XML-2.4 xml-2.4_min.jar XML related functions

C++:
cppunit >= cppunit-1.8.0 Unittests
openssl openssl-0.9.7e Data encryption
pthreads pthreads Thread programming
xerces Xerces-c2_5_0 XML-Parser

Version: 3.10 Development Environment _ v310.odt Page: 8

Project AN.ON
Development Environment

3.1 Java library installation

You may download the Java libraries from the [ANON] homepage and copy them to any
directory you want. We recommend the directory name ext_lib_jap.

Since Java is platform independent, you can use the same libraries in both Windows and
Linux. You should download the libraries needed by JAP from the [ANON] homepage. If
the libraries are not available at the [ANON] homepage or you need newer ones, you must
take care of project settings and library names when updating a library. We recommend to
put all needed Java libraries together into one directory, for example libs_java. You
will need to add this directory and the libraries, respective, to the classpath variable of
your IDE (described later).

3.2 C++ library installation on Linux

Please use the package manager of your Linux distribution to install the needed C++ li-
braries. You will need the following C++ libraries in the above mentioned versions. Be sure
to get the right ones for your distribution. (The following are the package names from
SuSE 9.3. Other distributions may differ in the package names.)

• cppunit
• cppunit-devel
• openssl
• openssl-devel
• xerces-c
• xerces-c-devel

Also be aware that your distributor may deliver some buggy packages. If the package
does not work, you will have to get the sources and compile it on your own. To do so, you
can normally follow the instructions included with the source code. We mention this be-
cause we experienced some problems with OpenSSL and SuSE 9.1.

Version: 3.10 Development Environment _ v310.odt Page: 9

Project AN.ON
Development Environment

3.3 C++ library installation on Windows

Using Windows, we recommend Eclipse running on Cygwin as the development platform
for C++. Microsoft Visual Studio .NET 2003 will also do. If you decide to use Eclipse for
C++ development, the following steps do not apply to you, because you can use the Cyg-
win package manager to install them.

3.3.1 Xerces-C

Due to some changes with the namespaces in Xerces-C 2.6.0, a new proxytest version
needs to be compiled with a Xerces-C source version lower than 2.6.0. A configuration
with Xerces-C 2.5.0 has been tested and works properly. To get a running version of the
Xerces-C 2.5.0 libraries you have to follow these steps:

• Since Xerces-C 2.5.0 is no longer the current version, you will need to go to:
http://archive.apache.org/dist/xml/xerces-c/Xerces-C_2_5_0/

and download
xerces-c-src_2_5_0.zip

• Unpack the downloaded archive to any directory; we recommend for example:
d:\coding\libsc\xerces-c-src_2_5_0

This chosen directory will be referenced as:
[xerces_home]

• Start Visual Studio 2003 .NET and, by selecting
File -> Open -> Project, open the file:
[xerces_home]\Projects\Win32\VC7\xerces-all\xerces-al-

l.sln
If asked to convert the files, you should answer with 'Yes'.

• Make sure that 'Debug' is chosen as the 'Solution Configuration'
• Start building the binaries with:

Build -> Build Solution (or: Ctrl+Shift+B)
Compilation and building will take a while.

• Now choose a 'Release' build in the 'Solution Configuration'
• Once again:

Build -> Build Solution (or: Ctrl+Shift+B)
Compilation and building will again take a while.

• Depending on the chosen build, you will find the executables in the subdirectories:
 [xerces_home]\Build\Win32\VC7\Debug

 [xerces_home]\Build\Win32\VC7\Release

• Add the following environment variables to your system:
INCLUDE_XERCES_C = [xerces_home]\src
LIB_XERCES_C_DEBUG = [xerces_home]\Build\Win32\VC7\Debug
LIB_XERCES_C_RELEASE = [xerces_home]\Build\Win32\VC7\Re-

lease
3.3.2 OpenSSL

Proxytest needs an OpenSSL version 0.9.7e. Testing caused some problems with other
versions. To get a running version of the OpenSSL 0.9.7e, you will have to compile
OpenSSL yourself.

Version: 3.10 Development Environment _ v310.odt Page: 10

http://archive.apache.org/dist/xml/xerces-c/Xerces-C_2_5_0/
http://archive.apache.org/dist/xml/xerces-c/Xerces-C_2_5_0/
http://archive.apache.org/dist/xml/xerces-c/Xerces-C_2_5_0/

Project AN.ON
Development Environment

Since the config files are generated by a Perl script, you first have to get a running Perl
environment onto your Windows system.
There is a free distribution from http://www.activestate.com/, which is simple to set up and
will suffice for our purposes. To get Perl running, just go to the above mentioned website
and look for a download link to ActivePerl 5.8.7 or newer. Activestate asks you to register
but registration is not mandatory. Proceed to the download with the 'NEXT' button and
then choose a binary package with either the MSI installer or a zipped package. You can
keep the default options given by the installation procedure. After installation, do not forget
to add the path of the \bin subdirectory of your Perl installation to your PATH environ-
ment variable! Unfortunately, this is not done automatically during the installation. Indeed,
it is necessary to be able to use the Perl interpreter from anywhere.

• To get a source distribution of OpenSSL, go to:
http://www.openssl.org/source/

• Unpack this archive into any directory, for example:
d:\coding\libsc\openssl-0.9.7e

The chosen directory will be referenced as:
[openssl_home]

• Open a command prompt window ("DOS box") and change into this directory
• Automatic generation of the config file is initiated by executing:

Perl Configure VC-WIN32
• For the following step, it is necessary that you have the ml.exe Microsoft Macro Assem-

bler in your path. Although this should have occurred automatically upon installation of
Visual Studio 2003, it sometimes causes problems. So, if the following commandcaus-
es error messages, you can fix the problem by executing the batch file:

C:\Programs\Microsoft Visual Studio .NET 2003

\Common7\Tools\vcvars32.bat
This batch file will set all environment variables properly so that VS2003 works

again. Be sure to call this batch file from the same command prompt window!
Environment variables set from a command prompt window are only set for that
command prompt instance!

• To finish the configuration process of OpenSSL, you need to run the following from the
command prompt:

ms\do_masm
• This will take some seconds. After the script has run, you can start the make process:

nmake -f ms\ntdll.mak
This will start the command line compiler of Visual Studio 2003 and generate the
libraries.

• These libraries will be placed in:
[openssl_home]\out32dll

• Add the following environment variables to your system:
INCLUDE_OPENSSL = [openssl_home]\inc32
LIB_OPENSSL = [openssl_home]\out32dll

Version: 3.10 Development Environment _ v310.odt Page: 11

http://www.openssl.org/source/
http://www.openssl.org/source/
http://www.openssl.org/source/
http://www.openssl.org/source/
http://www.openssl.org/source/
http://www.openssl.org/source/
http://www.activestate.com/
http://www.activestate.com/
http://www.activestate.com/

Project AN.ON
Development Environment

3.3.3 CppUnit

For compilation of CppUnit, the source code of version 1.8.0 or higher is needed. For this
document, version 1.10.2 was used. You can get CppUnit as a zipped archive from:

http://sourceforge.net/projects/cppunit/
Documentation for CppUnit needs to be generated using Doxygen. A short explanation of
how to do this is given in chapter 6.

Using Visual Studio .NET 2003

To compile CppUnit using Visual Studio .NET 2003, you should unzip to any directory (ref-
erenced as [cppunit_home]). Compilation with VS2003 is quite simple:

• Start VS2003 and open:
[cppunit_home]\examples\examples.sln

• If asked if you want to convert you should answer 'Yes to all'.
• Make HostApp the 'StartUp Project' and compile all.

You can do so by pressing <F5>, which will compile/build all.

* ToDo
* missing more detailed instructions
* how to run and test

--- snip (from the CppUnit docu) ---
- in VC++, Tools/Customize.../Add-ins and macro files/Browse...
- select the file lib/TestRunnerDSPlugIn.dll and press ok to register
 the add-ins (double-click on failure = open file in VC++).

--- snip (from the CppUnit docu) ---
•
•

Version: 3.10 Development Environment _ v310.odt Page: 12

http://sourceforge.net/projects/cppunit/
http://sourceforge.net/projects/cppunit/
http://sourceforge.net/projects/cppunit/
http://sourceforge.net/projects/cppunit/
http://sourceforge.net/projects/cppunit/
http://sourceforge.net/projects/cppunit/

Project AN.ON
Development Environment

3.3.4 zLib (Windows)

Proxytest only needs the static libraries of zlib-1.2.3. Compiling zlib-1.2.3 from source
code is not necessary, and we explicitly recommend against doing so, since it is a bit
tricky. There is a binary distribution for VS2003 that completely suffices for our purposes.
However, you will need to get the zlib-1.2.3 sources, as you need the header files. To
hook this distribution into proxytest you have to follow these steps:

• Download the binaries from
http://www.winimage.com/zLibDll/zlib123dll.zip

• To get the sources of zlib-1.2.3, unpack this zip archive to any directory, for example to
d:\coding\libsc\zlib-1.2.3

This directory is referenced in this document as [zlib_home]
http://www.zlib.net/zlib-1.2.3.tar.gz

Unpack these sources into
[zlib_home]\src

• Change into
[zlib_home]\static32

• Rename the file
zlibstat.lib into zlib.lib

This is necessary because the file is referenced from VS2003 as zlib.lib and noth-
ing

else. Alternatively, you could change the reference in VS2003, but each new check-
out

of the proxytest sources will overwrite your changes.

• Add the following environment variables to your system:
INCLUDE_ZLIB = [zlib_home]\src
LIB_ZLIB = [zlib_home]\static32

As an alternative to this procedure, you can instead download an archive that has already
been set up from: http://www.anon-online.de/zlib/zlib.zip
The archive at that location has already been prepared according to the above instruc-
tions, and placed in a zipped directory. This archive can be unpacked into any directory.
The chosen directory is referred as [zlib_mix]. It is not necessary to rename anything. You
simply have to add the following to your environment variables:

INCLUDE_ZLIB = [zlib_mix]
LIB_ZLIB = [zlib_mix]\static32

+++ ToDo – provide the mentioned zip-file / upload it to the webserver +++

In Unix or Linux, the zLib library is normally already included. If it is not, you should get it
with your distribution's package manager.
If you want or need to build the zlib-1.2.3 libraries completely on your own, you will run into
problems with the dependencies of proxytest. As mentioned, building zlib-1.2.3 on your
own is tricky and sources from various different sites are necessary.

Version: 3.10 Development Environment _ v310.odt Page: 13

file:///O:/www.anon-online.de/zlib/zlib.zip
file:///O:/www.anon-online.de/zlib/zlib.zip
file:///O:/www.anon-online.de/zlib/zlib.zip
http://www.zlib.net/zlib-1.2.3.tar.gz
http://www.zlib.net/zlib-1.2.3.tar.gz
http://www.zlib.net/zlib-1.2.3.tar.gz
http://www.winimage.com/zLibDll/zlib123dll.zip
http://www.winimage.com/zLibDll/zlib123dll.zip
http://www.winimage.com/zLibDll/zlib123dll.zip

Project AN.ON
Development Environment

3.3.5 pthreads (Windows)

Proxytest needs both the static and dynamic linked libraries and the header files of
pthreads-win32. It's not necessary that you compile the libraries yourself - there are pre-
compiled win-32 versions that work perfectly. We tested both 1.5.0 and 2.7.0 and they
both run well. So versions in between are also likely to run well.

• To get the binaries and header files, go to:
ftp://sources.redhat.com/pub/pthreads-win32/

Choose one of the pthreads-w32-x-xx-x-release versions
• Run the sfx and choose an empty directory by using the 'Browse' button. Then click on

'Extract'.
• We recommend, for example

d:\coding\libsc\pthreads-2-7-0
The chosen directory will be referenced in this document as [pthreads_home]

• Change into the directory
[pthreads_home]\Pre-built.2\lib

and rename the file pthreadvc2.lib to pthreadvc.lib
Again, this is a problem caused by the references from the VS2003 project file. As
previously mentioned for zlib, you can change the VS2003 references, but they will

be
overwritten each time you checkout new versions of proxytest from CVS.

• add the following environment variables to your system:
INCLUDE_PTHREADS = [pthreads_home]\Pre-built.2\include
LIB_PTHREADS = [pthreads_home]\Pre-built.2\lib

3.3.6 Setting the path variables

If you have followed the instructions above on compiling the libraries for Windows and you
added all of the environment variables as described, most of the configuration is already
done.
You just have to add as a global variable:

LIB_PROXYTEST = %LIB_XERCES_C_RELEASE%;%LIB_XERCES_C_DE-
BUG%;

%LIB_OPENSSL%;%LIB_ZLIB%;%LIB_PTHREADS%;
and finally add to your path variable:

PATH = %PATH%;%LIB_PROXYTEST%

Version: 3.10 Development Environment _ v310.odt Page: 14

ftp://sources.redhat.com/pub/pthreads-win32/
ftp://sources.redhat.com/pub/pthreads-win32/
ftp://sources.redhat.com/pub/pthreads-win32/
ftp://sources.redhat.com/pub/pthreads-win32/
ftp://sources.redhat.com/pub/pthreads-win32/
ftp://sources.redhat.com/pub/pthreads-win32/

Project AN.ON
Development Environment

4 Compiler
4.1 C++

Using Windows, it is not necessary to install an extra compiler since it is already included
in VS2003 or Cygwin. Using Linux or MacOS, you need g++ from the GNU compiler col-
lection in version 2.95 or higher. This compiler is usually shipped with every installation of
Unix or Linux.

4.2 Java

For the purpose of compatibility on many operating systems, the JAP client has to be
compiled with a Java compiler no newer than JDK 1.1.8. This version is the last available
Java version for MacOS 9. Since there are some bugs and difficulties in the 1.1.8 JDK
version for Linux, we recommend using version 1.4.0 or higher for execution and testing.
As a developer, you are restricted to use classes that are also available in the 1.1.8 JDK
version of Java despite the bugs. Thus, the 1.1.8 version from the Blackdown Java port is
recommended for compilation.

system version source
Windows 1.1.8_10 http://java.sun.com/products/archive/jdk/1.1.8_010/

http://java.sun.com/products/archive/jdk/1.1.8_010/jre/
Linux 1.1.8_v3 http://www.ibiblio.org/pub/mirrors/blackdown/JDK-1.1.8/i386/v3/
MacOS 1.1.8 http://developer.apple.com/java/classic.html

For installation, follow the automated scripts or install procedures. If automatic installation
is not available, you will need to copy both the compiler and the runtime into one directory.
We recommend adding the version number of your JDK to the directory name, e.g. jd-
k1.1.8 Newer JDKs are recommended for testing and debugging purposes. As men-
tioned previously, it is also possible to install more recent JDKs/JREs on your system for
testing purposes. Just be sure not to use libraries / classes / methods that are not avail-
able in Java 1.1.8.

Version: 3.10 Development Environment _ v310.odt Page: 15

http://developer.apple.com/java/classic.html
http://www.ibiblio.org/pub/mirrors/blackdown/JDK-1.1.8/i386/v3/
http://java.sun.com/products/archive/jdk/1.1.8_010/jre/
http://java.sun.com/products/archive/jdk/1.1.8_010/

Project AN.ON
Development Environment

5 IDEs
The Eclipse IDE is written in Java and available for all relevant platforms (Linux, Windows,
MacOS). As it supports both Java and C++, we recommend it for developing of all AN.ON
sub-projects. For Windows, we also use Microsoft Visual Studio 2003 for Mix develop-
ment, but the installation of the needed libraries is tricky and we only recommend to use
this IDE if you are a very experienced programmer. Our personal favourite for Java devel-
opment is Borland JBuilder - if you do not mind using two different IDEs for Java and C++,
and if you are not against closed-source programs, this will be your best choice for the
Java sub-projects.

5.1 Specific development requirements on Microsoft Windows

For Java development, either Eclipse or JBuilder are a good choice and both easy to in-
stall. If you use Eclipse for C++ development, too, you have to run it under the Unix emu-
lator Cygwin, which prodives the tools and libraries needed to checkout and compile the
C++ code. Instead, you may use Microsoft Visual Studio for C++ development and an ar-
bitrary extra tool for checking out the code from the source repository.

5.1.1 Installation of Cygwin

Download and install Cygwin from http://www.cygwin.com/ first. Execute setup.exe and
confirm the default settings (Install from Internet, installation path etc) until you see the
package selection window. Keep in mind that this installation might easily consume
500MB, so try to exclude unwanted packages. You will, however, need all the compiler
tools (especially gcc and make) AND the C++ libraries mentioned in section 3.

5.1.2 Setting up a CVS client

If you use Microsoft Visual Studio for development, you will first need to manually down-
load a CVS client. A really easy-to-use client that integrates completely in the Windows
Explorer is TortoiseCVS (http://www.tortoisecvs.org/).

In the following, we provide short insturctions for the use of another tool, WinCVS,
(http://www.wincvs.org/), which is distributed under the LGPL license:

Choose a current version (see the 'Latest Recommended Release' on the website). Down-
load a release with an installer. Choose a mirror near your location. Start the installer and
follow its instructions. Nothing additional is needed.

Now, to get the source code from CVS, follow these instructions:

• Start WinCVS and select a directory in which to put your copy of the code
• Enter this directory in the upper dropdown field, which also allows you to browse

through your system directory

Version: 3.10 Development Environment _ v310.odt Page: 16

http://www.wincvs.org/
http://www.wincvs.org/
http://www.wincvs.org/
http://www.tortoisecvs.org/
http://www.tortoisecvs.org/
http://www.tortoisecvs.org/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/

Project AN.ON
Development Environment

• To checkout a project / component choose 'Remote' -> 'Checkout module'

WinCVS – Settings for proxytest

• In the 'Checkout settings' window that appears, enter:
Module... : proxytest (or any other module name – see above)
Local folder... : any directory you want to put the sourcecode to
CVSROOT : :pserver:anonymous@cvs.inf.tu-dresden.de:/home/sk13/cvssource

• Be especially careful about the colon, which has to be the first character before
“pserver”

• Clicking the 'OK' button will start downloading the sources
• This procedure will work for each of AN.ON's modules (ie. JAP, MixConfig, InfoService)
5.1.3

5.1.4 C++ development using Visual Studio 2003 .NET

The project files with working settings for Visual Studio 2003 .NET are shipped with the
proxytest code.

Visual Studio 2003 .NET – Opening proxytest and setting the 'Startup project'

• Start Visual Studio 2003 and open the file proxytest.sln as shown above
• Choose proxytest as your startup project and start a compile / make
• This should lead to a binary in the subdirectory

 \windows\Debug_Build_Test
• On errors, you can change settings and the paths to header / library files by manipulat-

ing the project settings by choosing: Project -> Properties from the upper menu bar
• For example, the paths to header files are set at:

C/C++ -> General -> Additional Include Directories
• And libraries are set at:

Linker -> Input -> Additional Dependencies

Visual Studio 2003 .NET – Project settings

5.2 Eclipse IDE

5.2.1 Java Runtime Environment

Eclipse 3.1 requires the Java 1.5 (J2SE 5.0) runtime environment. If Java 5.0 is not yet
provided by your distribution as a package, you can download it from:

http://java.sun.com/j2se/downloads/
Please follow the installation instructions shipped with the archive. If an older version is al-
ready installed on your system, this is not a problem. You may install as many JDKs simul-

Version: 3.10 Development Environment _ v310.odt Page: 17

http://java.sun.com/j2se/downloads/
http://java.sun.com/j2se/downloads/
http://java.sun.com/j2se/downloads/
mailto:anonymous@cvs.inf.tu-dresden.de
mailto:anonymous@cvs.inf.tu-dresden.de
mailto:anonymous@cvs.inf.tu-dresden.de

Project AN.ON
Development Environment

taneously as you want in different directories on your system. Normally they will not inter-
fere with each other.

5.2.2 IDE installation

After having set the basic runtime environment, you may proceed with the installation of
the Eclipse IDE. To get Eclipse, go to:

http://www.eclipse.org/downloads/index.php
To accelerate your download, choose a mirror near your location. After having finished the
download, unpack the archive. For Linux, you may do this like this:

tar xfz eclipse-SDK-3.1-linux.gtk.tar.gz

Then, move the new folder to your programs directory, for example to
C:\Program Files\eclipse, /opt/eclipse or maybe

/usr/share/eclipse

On Linux, you may need root access to move the directory:
su
mv ./eclipse /opt/eclipse (for example)
exit

Open a shell to create a link /usr/bin/eclipse to the Eclipse program file to get a
quick access to it. If you use Windows, you have to open the Cygwin shell. A link may be
created by

 ln -s /cygdrive/c/eclipse/eclipse.exe /usr/bin/eclipse (for example)

if Eclipse was copied to c:\eclipse on a Windows system. Now simply type “eclipse” any-
where in a shell to start Eclipse. You may also create a graphical link for your desktop or
start menu: On Windows, create a text file /usr/bin/eclipse.sh with the content

/usr/bin/eclipse

Make it executable by typing
chmod a+x /usr/bin/eclipse.sh

Now, create a desktop link with the following call (replace %cygdir% with your Cygwin in-
stallation path)%:

%cygdir%\bin\bash %cygdir%\bin\eclipse.sh

For Linux, please refer to your window manager help on how to generate desktop links.
5.2.3 Configuration for Java sub-projects

To get the current development version of JAP, there is a CVS with anonymous checkout
permissions. Eclipse 3.1 provides a built-in CVS client that is easy to use.

• Start Eclipse, open the 'File' menu, choose 'New' and select 'Project'
• In the 'New Project' window, choose the 'CVS' and 'Checkout Projects from CVS' wizard
• Proceed by clicking the 'Next >' button

Version: 3.10 Development Environment _ v310.odt Page: 18

file:///C:/eclipse.on
file:///C:/eclipse.on
file:///C:/eclipse.on
http://www.eclipse.org/downloads/index.php
http://www.eclipse.org/downloads/index.php
http://www.eclipse.org/downloads/index.php

Project AN.ON
Development Environment

• Enter the following values and proceed by clicking 'Next >' again
Host: cvs.inf.tu-dresden.de
Repository path: /home/sk13/cvssource
User: anonymous
Connection type: pserver

• Finally, choose the module that you want to import (e.g. 'JAP', 'MixConfig',)

Eclipse – CVS Checkout settings for JAP

• It may take a few seconds until the code is downloaded and imported into Eclipse 3.1

Since there are no configuration files for Eclipse 3.1 in the CVS source yet, you have to
adapt JAP to your systems settings. For running and compiling JAP, the following libraries
are needed:

ApacheBZIP2 ApacheXMLrpc HttpClient JunitX 5.1 Mail (??)

ApacheFTPClient BoucyCastleLight-
ForJAP

Jama Log4J MRJClasses

As mentioned previously, you can download all of these libraries in the proper versions
from the AN.ON website. Choose the packages for your desired component.

http://anon.inf.tu-dresden.de/develop/sources_en.html
Please save these libraries into one common directory. Then change back to Eclipse and
open the Project -> Properties and navigate to 'Java Build Path' and choose the 'Libraries'
tab. Get rid of all the 'unbound' references by selecting each of them and pressing the 'Re-
move' button on the right. After this again add the external libraries which you have down-
loaded before by pressing the 'Add External JARs...' button and choosing the folder where
you saved the libraries. Select all of them and press 'Open' in the file dialog.
Do not forget to add the 'JRE System Library' you want to execute the program on. In the
screenshot below this is for example 'Java-1.5.0.sun-1.5.0_03' (the last entry). Do so by
pressing the 'Add Library...' button, selecting 'JRE System Library' and normally choosing
your 'Workspace default JRE'. Confirm with the 'Finish' button.
This JRE settings would allow you to test the proper execution of changed / improved JAP
versions on older Java runtimes.

Eclipse – Properties - Project / Libraries for JAP

After having done this, the project can be compiled / run. The tests should run correctly as
well. To start JAP on your machine, open the 'src' and then the '(default package)' from
the 'Package explorer' on the left side. Choose JAP.java or JAPMacintosh.java and
press the right mouse button. Then choose: 'Run as' -> 'Java application' or use the key
combination <Shift> + <Alt> + <J> <X> to start it.

Installing FatJar Plugin
Eclipse doesn't automatically integrate external libraries into your .jar when exporting your
Project. This functionality is provided by an plugin called “FatJar”. To install this plugin, go

Version: 3.10 Development Environment _ v310.odt Page: 19

http://anon.inf.tu-dresden.de/develop/sources_de.html
http://anon.inf.tu-dresden.de/develop/sources_de.html
http://anon.inf.tu-dresden.de/develop/sources_de.html
http://anon.inf.tu-dresden.de/develop/sources_de.html
http://anon.inf.tu-dresden.de/develop/sources_de.html
http://anon.inf.tu-dresden.de/develop/sources_de.html

Project AN.ON
Development Environment

to http://sourceforge.net/projects/fjep and download it. Unzip the “plugins” folder and move
it to the plugins folder of Eclipse. You will have to start Eclipse with the „clean“ option
(„eclipse -clean“), otherwise the plugin won't be found.
Right click on your project and you will see the new entry „Build fat jar“. This is also availa-
ble under File -> Export. Use this instead of the standard jar.
For more information on this plugin, visit http://fjep.sourceforge.net/ (description) and
http://fjep.sourceforge.net/fjeptutorial.html (tutorial, just have a look).
5.2.4 Configuration for C++ sub-project 'proxytest'

Installing CDT

For C/C++ development, you will need to download CDT, a plugin for Eclipse that provides
a fully functional C and C++ IDE for the Eclipse platform. More information about CDT can
be found at:

http://www.eclipse.org/cdt/
Downloading and integrating CDT into Eclipse is simple. You can use the built-in update
manager.
• Start Eclipse, open the 'Help' menu, choose 'Software Updates' and select 'Find and In-

stall...'
• In the 'Install / Update' window, choose the second point, 'Search for new features to in-

stall' and click 'Next >'
• Click the first button 'New Remote Site...' and enter the following into the window that

appears:
Name: CDT 3.0.0 for Eclipse 3.1
URL: http://download.eclipse.org/tools/cdt/releases/eclipse3.1
then proceed by clicking the 'OK' button

Eclipse – Installation of CDT 3.0.0

• In the new window, be sure that the checkbox 'CDT 3.0.0 for Eclipse 3.1' is selected or
nothing will be installed

• Proceed by clicking the 'Finish' button
• In the new window, select the checkbox 'CDT 3.0.0 for Eclipse 3.1' again,
• The branches will be automatically selected. To proceed, click 'Next >' again
• Accept the license agreement and click 'Next >'
• Finally, you need to confirm where you want to install CDT and click 'Finish'
• It takes a while until all the components have been downloaded
• In the 'Verification' window that may appear, you can proceed by clicking 'Install All'

even though CDT has no digital signature yet
• This verification may not be necessary in the future when the package has been signed
• Restart Eclipse so that the configuration is updated

Version: 3.10 Development Environment _ v310.odt Page: 20

http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/
http://fjep.sourceforge.net/fjeptutorial.html
http://fjep.sourceforge.net/fjeptutorial.html
http://fjep.sourceforge.net/fjeptutorial.html
http://fjep.sourceforge.net/
http://fjep.sourceforge.net/
http://fjep.sourceforge.net/
http://sourceforge.net/projects/fjep
http://sourceforge.net/projects/fjep
http://sourceforge.net/projects/fjep

Project AN.ON
Development Environment

Getting the code from CVS

Having set up the IDE for C++, you can now get the proxytest source code from the CVS
server. If you have checked out the 'JAP' code before, there should already be an existing
profile for the repository settings. If you have not done this yet, you can follow the instruc-
tions given above. You only have to exchange the module name with 'proxytest'.

Eclipse – Checkout proxytest from CVS

Be sure to put the source code in a new directory! It cannot be placed in your Eclipse
workspace! To put the source code in a new directory, in the last window at 'Select the
project location', be sure to deselect 'Use default workspace location' and enter another
directory within your /home that you have already created.
This step is very important because otherwise it is not possible to create a new 'Standard
C/C++ Project'.

After these steps, close the project by selecting it in the left 'Navigator' perspective and
choosing 'Close Project' from the context menu. To remove the entry too, select 'Delete'
from the context menu. Be sure that 'Do not delete contents' is selected when you click
'Yes' to confirm it.

Checking out the code on a windows platform you will have to use dos2unix to convert
config.h.in from windows linebreaks to unix linebreaks. To do so, open cygwin and call
dos2unix /path/to/config.h.in

Because the dependencies on libraries and code for the Eclipse C++ project are based on
the 'proxytest' make file, you have to run the configure script before you import the project
into Eclipse.
To do so, open a console and change into the directory where you put the sources from
CVS.

cd proxytest (change into the directory)
./configure (run the configure script)

It will take some time until the make file is generated.
Now you can import the source code as a 'Standard C/C++ Project'.

Eclipse – Create new 'C++ Make Project'

• Be sure to deselect 'Use default' and enter the directory where you put the code that
you checked out from CVS

• Proceed by clicking the 'Finish' button

Version: 3.10 Development Environment _ v310.odt Page: 21

Project AN.ON
Development Environment

• If you are asked whether you want to open the C/C++ perspective, you can answer with
'Yes'

Compiling and Running proxytest

If everything worked, you should now be able to open each class and the syntax should be
highlighted. As you start to program, you will realize that code completion is enabled from
the Java perspective of Eclipse.
Although it should be disabled by default, when changing the perspective, the 'Build auto-
matically' option could be enabled. This setting won't work with C++ because its build pro-
cess is quite different from the Java build process. To change the settings, open the
'Project' menu from the upper menu bar and disable this option manually.
If the right versions of the necessary libraries are installed on your system in the correct
manner, you should now be able to build the project.
To build a binary, select the project in the left-side 'Navigator' and choose 'Build Project'
from the context menu.

Eclipse – Building 'proxytest'

If all went well, you should now be able to run the MIX server. Before starting, you have to
set the configuration files. You can choose to run MIX as the first or last MIX in a cascade,
with or without logging functionality. Additional or alternative configuration files can easily
be generated with the MixConfigTool. The shipped configuration files can be found in:

/proxytest/documentation/SampleConfiguration/

Starting the MIX with a specific configuration from within Eclipse 3.1 is done as follows:

• Set the focus to the 'Navigator' perspective and click 'mix'. A small input box will appear
at the bottom of that window and the cursor will jump to the file name that most closeley
matches your input (this is a built-in search function)

• You should find an entry like
>mix(Binary)

• Select this and choose from the context menu 'Run as' and 'Run...' (the last menu
point)

• In the 'Run Manager' window that opens, navigate to the 'Arguments' tab and, for exam-
ple, to run the MIX as last Mix, enter:

--config=/documentation/SampleConfiguration/LastMix.xml
• Click the 'Run' button
• In the 'Console' perspective, you should now see the starting messages from the MIX

Version: 3.10 Development Environment _ v310.odt Page: 22

Project AN.ON
Development Environment

Eclipse – Running 'proxytest'

•

Version: 3.10 Development Environment _ v310.odt Page: 23

Project AN.ON
Development Environment

5.3 Borland JBuilder IDE

The JBuilder IDE from Borland is a good choice for Java development, as it is a platform
independent, well-engineered piece of software and avaliable both in free and commercial
versions.

5.3.1 Download and Installation

Download the program and a registration file from the following address:

Tool Version Quelle
JBuilder X, Foundation http://www.borland.com/products/downloads/download_

jbuilder.html

You will have to register at Borland to start the download. We recommend that you also in-
stall the JBuilder help files, that are available in an extra package.

If you have problems to run the installer under Linux, you should set execution rights via
chmod +x.

5.3.2 Programmstart

When first starting Jbuilder, it needs to be registered by reading the registration file. In the
registration wizard, click „Have Activation File“, then „next“, and then enter the path to the
registration file. Clicking on „Finish“ then completes registration.
Links to the IDEs are automatically created during the installation. For Jbuilder on Linux,
the link needs to be modified in order to insure that the JDK 1.1.8 is found correctly.:
JAVA_HOME="" /usr/JBuilderX/bin/jbuilder (The exact path to JBuilder de-
pends on your system/Linux distribution and may therefor vary)

Version: 3.10 Development Environment _ v310.odt Page: 24

http://www.borland.com/products/downloads/download_jbuilder.html
http://www.borland.com/products/downloads/download_jbuilder.html

Project AN.ON
Development Environment

5.3.3 CVS Checkout

CVS stands for „Concurrent Versioning System. It is a system for version control of code.,
intended to help programming teams coordinate their work.. All code is saved on a central
CVS-server, and downloaded (checked out) by IDEs or other clients.

Note for JBuilder on Linux: The CVS-Integration for JBuilder contains a Bug, which may
lead to CVS not being found by JBuilder. This is most likely caused by a version conflict
between several versions of CVS installed on the same Linux system. This problem can
be resolved by replacing the CVS executable used by Jbuilder with a symbolic link:

su
cd [JBUILDER_HOME]\bin
rm cvs
ln -s usr/bin/cvs cvs

Before a component can be edited or compiled, you need to create a project and check
out the source code from CVS. AN.ON consists of the following modules (Name is case-
sensitive!):

Jap
MixConfig
proxytest

The corresponding Jbuilder project will be created by checking out the code like this:

Version: 3.10 Development Environment _ v310.odt Page: 25

Figure 1 "File->New"

Figure 3 Choose a target directory (has to be empty)
and click on "Checkout - for development work"

Figure 4 Connect type: "PServer", Server: "cvs.in-
f.tu-dresden.de", User name: "anonymous"

Figure 2 "Pull Project form CVS"

Project AN.ON
Development Environment

The module „Jap“ will create several projects. To be able to update the each project via

CVS, activate it (by double clicking it in the explorer window on the left-hand side) and re-
gister it for CVS by choosing „Select Project VCS“ in the „Team“ menu.

Version: 3.10 Development Environment _ v310.odt Page: 26

Figure 7 Either choose "The main branch" or pick a
suitable Branch in the repository by clicking on
"Scan"

Figure 6 Repository: "/home/sk13/cvssource", Mo-
dule name: [Jap, proxytest, InfoService, MixConfig];
Case-sensitive!

Figure 5 If you are asked for a passwork, simply
ignore it by leaving the password field blank and
clicking "OK" .

Project AN.ON
Development Environment

5.3.4 Formatting Options

Most formatting guidelines contained in the programming standards can be automated by
the IDE. [PRICHTLINIEN]. Simply import the file „[IDE].codestyle“, and import it like this:

(Caution: Autoformatting in the C++-Builder is buggy, do not use it yet!)

JBuilder then allows you to select single classes or whole packages using the class brow-
ser, and to format them using the „Format package“ command. C++Builder can only for-
mat single classes. To do so, open the class, and choose „Edit/Format all“.

Version: 3.10 Development Environment _ v310.odt Page: 27

Figure 11 Open "[IDE].codestyle" Figure 10 (Formatierung in the C++Builder)

Figure 9 Choose "Formatting" (JBuilder).
Figure 8 Project->Project Proper-
ties

Project AN.ON
Development Environment

5.3.5 Compiler integration
The complier needs to be registred with the IDE, and set for the project:

5.3.6 Integrating the libraries

Each Component depends on several external libraries, which first need to be set up in
the IDE:

Version: 3.10 Development Environment _ v310.odt Page: 28

Figure12 Tools->
Configure JDKs

Figure 13 click "New" .

Figure 14 Click on "..." and choose the path to the
JDK.

Figure 15 Projects->Project properties->Paths->Source->JDK->“...“Figure 16 Tools-
> Configure Li-
braries...

Figure 17 Add the necessary libraries using "New" . Then click „Add"
and enter the path to the library's Jar file

Project AN.ON
Development Environment

5.3.7 Compilation
If everything worked so far, you can now compile the project:

Jbuilder will put the compiled files into the „classes“ directory, C++Builder into the directo-
ry Linux\[Debug]Build or Windows\[Debug]Build.
Tip: If you should enconter an error during compilation, it is recommended to delete the
contents of those directories before compiling again or starting „Rebuild“.

5.3.8 Ausführen
You can now run the project by choosing Run->Run Projects .

Version: 3.10 Development Environment _ v310.odt Page: 29

Figure 18: Choose a library, and click "OK".

Figure 19 The "Build"-Button. Figure 20 Any "Deprecated"-Messages can safely be ignored

Project AN.ON
Development Environment

6 Doxygen
Doxygen is an open source documentation tool for different programming languages.
For graphical output it needs Graphviz, which is also open source and needs to be in-
stalled after Doxygen.

6.1 Download

tool version source
Doxygen 1.3.6 http://www.doxygen.org
GraphViz 1.1x http://www.graphviz.org

6.2 Installation

Using Linux, we recommend installing Doxygen and Graphviz from the pre-compiled pack-
ages for your distribution.
Using Windows, you can download the binaries from the websites listed above. Conve-
nient auto-installers are shipped with the Windows versions.

Run the main program by starting 'Doxywizard'. In the GUI, select 'Load' and choose the
[proxytest_home] folder. From there, select the *.doxy file from which you want to gener-
ate the documentation.
In the source folder of each AN.ON component, there is a file called

<components-name>.doxy
This file has to be opened with the Doxywizard.
Finally, click the 'Start' button to generate the documentation. This may take a while. You
can follow the output of Doxygen in the lower 'Output' window. If errors occur, they will
also appear there.

Version: 3.10 Development Environment _ v310.odt Page: 30

http://www.graphviz.org/
http://www.doxygen.org/

Project AN.ON
Development Environment

7 Unittest environments
7.1 JUnit

The unittests can be found in the "test" directory and can be started by right clicking on the
desired class:

Tip: Unfortunately, the JUnit support built into JBuilder cannot be used with JDK 1.1.8 in-
stead of the previously described process. Use of a newer JDK would be necessary for
that.

7.2 CppUnit

In C++Builder, double click on the "AllTests" project. and then execute the Unittests as
you would a normal project:

8 Running the tests
8.1 Architecture

Version: 3.10 Development Environment _ v310.odt Page: 31

Figure 21 Run using
"[project]"

Figure 22 This is what you should see if
all tests pass.

Figure 23 Double click on
the "AllTests" project. The
test classes are in the "test"
directory.

Figure 24 This is what you should see if all tests pass.

Project AN.ON
Development Environment

On the local machine, we can simulate a Mix-cascade by running two Mixproxy instances
in parallel. You will also have to start the JAP client and set it as proxy for your browser.
If your web browser can access the data distributed by the Apache web server (e.g. the
Apache documentation), the configuration is working properly.
There is no access possible from the internet.
The testing environment consists of the following elements:

• Infoservice – instance
• 2 Mixproxy instances (cascade)
• Apache Web server
• JAP – instance
• any Web browser (recommendation: Mozilla)

8.2 Configuration

8.2.1 Config files
type filter text
The necessary config files do not need to be created by hand but are shipped with the
CVS module. You can find them at:

[proxytest_home]/docs/SampleConfiguration

The following configurations and directories can be found there:

• logFirstMixWihth (d)
• logLastMix (d)
• FirstMix.b64.cer
• FirstMix.xml
• FirstMixWithLog.xml
• InfoService.properties
• jap.conf
• LastMix.b64.cer
• LastMix.xml
• LastMixWithLog.xml
• private.pfx
• public.cer

Version: 3.10 Development Environment _ v310.odt Page: 32

Project AN.ON
Development Environment

8.2.2 InfoService

The following certificates and config files can be found at:
[proxytest_home]/documentation/SampleConfiguration/

• FirstMix.b64.cer
• LastMix.b64.cer
• private.pfx
• public.cer
• InfoService.properties

There, you will also find the logfiles for the InfoService component.

8.2.3 Mix cascade

The following config files for parts of a Mixcascade can be found at:
[proxytest_home]/documentation/SampleConfiguration/

• FirstMix.xml
• FirstMixWithLog.xml
• LastMix.xml
• LastMixWithLog.xml

Depending on the function of the MIX as first or last mix, the logfiles of the MIX server can
be found in the /logFirstMix or /logLastMix subdirectory.

8.2.4 Apache HTTP Server (version 1.3.x oder 2.x)

Normally on Linux systems, the Apache server is running in the default configuration.
If it is not running yet on your system, it is quite simple to install with the help of your distri-
bution's package manager.
Using a Windows system, you first have to get Apache from http://httpd.apache.org and
install it.
You can proceed directly to this URL to get the 1.3.29 version for Windows.

http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_sr-
c.exe
During the installation process, you should keep the preselected default options.

Starting and stopping the server is done as follows.

(Linux)
Open a console and enter:

su (to get
root)

/etc/init.d/apache start (starting Apache)
/etc/init.d/apache stop (stopping Apache)

(Windows)
There are shortcuts in your 'Start' menu for both starting and stopping.

Version: 3.10 Development Environment _ v310.odt Page: 33

http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://www.apache.de/dist/httpd/binaries/win32/apache_1.3.29-win32-x86-no_src.exe
http://httpd.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/

Project AN.ON
Development Environment

8.2.5 JAP

The configuration file jap.xml (also in the CVS of the JAP project) has to be placed in the
home directory of the user. If non-existent, the file will be generated automatically with de-
fault values upon the first use of JAP.
For running the tests, you will have to overwrite it with the values you need.
Debug- or logging output from JAP will be printed on an optional console, which has to be
activated explicitly, or in the debug-view of your IDE. To turn on the debug output from
JAP, activate the checkbox in 'Misc' in the JAP window.
The connection to your Mixcascade is set by activating the 'Anonymity' checkbox within
the main window of JAP.

8.2.6 Web browser

Your browser has to be configured so that web access done exclusively through JAP. To
do so, add JAP as http-proxy on address 127.0.0.1 at port 4001 (default).
Furthermore, you have to ensure that only this proxy is used for accessing the web (no
other proxies should be set). You can ensure this by turning JAP off and trying to connect
to any website that is not in your cache.
In order to avoid any external errors, we also advise turning off any caching in your brows-
er.

8.3 Start

For the same reason of avoiding external errors, you should turn off any running firewall.
Needless to say that tests should never be run on a production system!

Now the time has come to open and run the components in their native development envi-
ronment with each component in its own instance if the IDE.
Apache can run the entire time as a daemon / background service.

• InfoService (JBuilder)
• First Mix (VC7)
• Last Mix (VC7)
• JAP (JBuilder)

Finally, you have to activate 'Anonymity' in the JAP client. JAP should not generate any er-
rors in the console.

Version: 3.10 Development Environment _ v310.odt Page: 34

Project AN.ON
Development Environment

8.4 Test

The correct configuration of the test environment can be tested with a simple trick. First,
start JAP and make sure that it is running as a proxy (activate 'Anonymity'). Now start your
browser (after configuration as described in 8.2.6) and open the URL:

http://localhost
You should see a website (normally the documentation of Apache) generated by your lo-
cally running Apache.

Now uncheck the 'Anonymity' checkbox in JAP and in your browser reload the same ad-
dress. An error message generated by your browser should appear. There is no longer a
proxy running in the background, so your browser cannot find any websites.

If this does not happen, you either did not set JAP as a proxy in your browser (see 8.2.6),
or there is still a way your browser has access to the internet. Another problem may be
that the site is already cached by your browser. Clear the browser cache and try again.

Version: 3.10 Development Environment _ v310.odt Page: 35

http://localhost/
http://localhost/
http://localhost/

Project AN.ON
Development Environment

9 Payment Instance Setup
9.1 System requirements:

• a working Java environment
• a running Postgresql server
• the JDBC driver for postgresql
• the OpenSSL tool (unless you already have a key file and certificate)

9.2 You will need:
• BI.jar (contains all Java code for the payment instance)
• the jar files of all necessary libraries
• a key file and certificate for the JPI
• a jpi configuration file
• a postgresql database and server

9.3 Creating the Jar file

If you just want to run the JPI without making changes to the code, simply download it
from the project homepage / ask a project representative for the code.
To build a new jar file after making changes in Jbuilder:

1. Do a rebuild
Menu “Project”, choose “Rebuild Project Bezahlinstanz.jpx”)

2. Set up the jarfile
In the Project Pane, pick the “Project” tab. Find the file “BI.jar”, right-click on it, and
choose “Properties”. Under “Content”, either pick “Include all classes and re-
sources”, or include at least the filters “anon/crypto/*.*” and “jpi.*.*”. IMPORTANT:
Under “Dependencies”, pick “Include All” for the Postgres and BouncyCastle pack-
ages.

3. Rebuild jar file
In the jar file's context menu, click on “Rebuild”.

9.4 Creating the key file and certificate

Use the following commands in a shell:
openssl dsaparam -genkey 1024 -out bi.key
openssl req -x509 -new -out bi.cer -key bi.key -subj "/CN=BI/"
openssl pkcs12 -export -in bi.cer -inkey bi.key -name BI -nodes -noiter -out
bi.pfx

9.5 Creating the Postgres database

Use the following commands:
su postgres
createuser -A -D biuser
createdb -O biuser bidb

To confirm the creation of the database, log into your newly created database by typing
psql -U biuser -d bidb

Version: 3.10 Development Environment _ v310.odt Page: 36

Project AN.ON
Development Environment

The database will be empty, the necessary tables will be created by the JPI itself.

If conecting to the database does not work, try editing the hba.conf file (under linux, usu-
ally in /etc/postgresql, or in your postgres data directory) to allow connecting with a
password. Example:
All other connections by UNIX sockets
local all all password
All IPv4 connections from localhost
host all all 127.0.0.1 255.255.255.255 ident password
Note that Postgres looks only for the first line matching a connection in pg_hba.conf
After editing hba_conf, you need to restart postgres using pg_ctl reload (usally found
in /usr/lib/postgresql/bin)

9.6 Creating the JPI configuration

The JPI configuration can be named anything you like and is a simple textfile with all lines
in the format of option = value.A sample configuration named config.example is contained
in the CVS project and can be used as a starting point.

Note that options regarding the volume plans and payment options offered are intended to
be edited using the PIG (payment instance GUI) and will only be read from the configura-
tion file if you start the JPI using the parameter new.

You will need to adjust the following options:

id official identifier within the AN.ON system, used by JAP, AI and In-
foService

name human-readable name of the JPI
infoservices Hostname and port of the InfoServices that the JPI will register

itself with (Format: host:port, host2:port2,...)
japlisteners How the JPI can be contacted by JAPs (Format: host:port,

host:port,...).
ailistener connection interface towards the AI (Format: host:port)
mclistener connection interface towards the MixConfig tool
paypallistener connection interface for Paypal to send IPN notifications – make

sure the same value is set in your Paypal merchant account
virtualXXXlistener Every listener interface has a corresponding virtual listener inter-

face. If you do NOT use a cluster setup for the JPI, you can leave
out the virtual listeners, or set it to the same as the real listener
For cluster setups, the real (non-virtual) listener is what the JPI its-
lef uses to listen to; the virtual listener is used by the outside world
to contact it, and what is sent to the InfoService

Database options
dbhost hostname or IP of the JPI's postgres database (most likely local-

host)
dbport Postgres port (most likely the default 5432)

Version: 3.10 Development Environment _ v310.odt Page: 37

Project AN.ON
Development Environment

dbname Name of the dababase to be used by the JPI (should be bidb)
dbusername Owner of <dbname>, should be biuser
dbpassword <dbusername>'s password
Keyfile options
keyfile Path to the .pfx key file (just the filename if it's in the same directo-

ry as the JPI jarfile)
keyfilepassword Password for <keyfile>, as entered when <keyfile> was created

using OpenSSL. For extra security, leave blank to be asked for the
password on startup.

Logging options
logfilename self-explanatory
logfilethreshold accepted values: 1 up to 7 (7 = maximum detail)
logstderrthreshold just like logfilethreshold, for messages to be written to stderr
nr_of_logfiles The jpi keeps rotating log files, i.e. BI.log is the newest, older files

get names like BI.log.1, BI.log.2,... Nr_of_logfiles determines how
many old log files you want to keep, 10 is a good idea

size_of_logfiles Size of a single logfile in bytes, suggested value: 5000000
Textfiles options
termsfile Name of the html file(s) containing the terms and conditions.

Needs to be valid xhtml!
Will be read once on startup, changes require a restart
The JPI will load files with names of
<termsfile>_<language>.<termsfile-extension>
e.g. termsfile=terms.html, termslanguages=de,en
=> will load terms_en.html and terms_de.html

termslanguages comma-separated 2-letter codes, e.g. de,en
policyfile html file(s) containing the cancellations policy, ananlogous to

termsfile
policylanguages comma-separated 2-letter codes, e.g. de,en
Misc options
maxcascadelength Integer. Maximum no of mixes that will be paid in one cascade
log_payment_stats_
enabled

True or false: set true if you want to log statistics about traffic per
Mix or Jap and month.

For Details on how to set other options regarding prices and payment, see [DIPLOBAIER].
However, these options should really be set using the JPI-GUI. Additional Options needed
for configuring the paysafecard or Call2pay payment options are described in
[DIPLOSCHRAML].

Version: 3.10 Development Environment _ v310.odt Page: 38

Project AN.ON
Development Environment

9.7 Starting the JPI

It is recommended to run the JPI inside a screen. To create a screen, type screen -R
jpi (or any other name). Then start the jpi inside the screen, and return to the normal
shell using Ctrl+A+D. To return to the shell, use screen -list for an overview over ex-
isting screens, and screen -r <name> to go to an existing screen.

Your Java classpath needs to include the jar files of the necessary libraries (Every single
.jar-file, not just the directory of the libraries!). Alternatively, you can integrate the libraries
into the single BI.jar file by using the BI.jar file's context menu in Jbuilder, going to “Prop-
erties”, then “Dependencies”, and choosing “Include all” for all libraries.

To start the JPI, simply use java -jar BI.jar config.example
If you use another configuration file, replace config.example with the path and filename to
your custom configurations file.

IMPORTANT: When starting the JPI for the first time, add a command line parameter new
(e.g. java -jar BI.jar config.example new). This will create the database ta-
bles, and populate the paymentoption tables in the database from the configuration file.

Version: 3.10 Development Environment _ v310.odt Page: 39

Project AN.ON
Development Environment

10 Accounting Instance Setup
10.1 System Requirements

• A working, running Postgresql Server
• Ability to recompile the Mix code

10.2 You will need

• The mix code (CVS module proxytest)
• the postgres-devel packages (should be OK if you have Postgresql installed)

10.3 Compiling the first Mix

1. Configure the Mix using ./configure –enable-payment
2. Recompile

10.4 Setting up the database

1. Create the User
In a shell, use createuser -A -D aiuser

2. Create the database
In a shell, use createdb -O aiuser aidb

3. Create the necessary tables
Log into the database by typing psql -U aiuser -d aidb
Then run the following commands:
create table costconfirmations (

accountnumber bigserial,
bytes bigint,
xmlcc varchar(2000),
settled integer,
cascade varchar(200),
primary key(accountnumber,cascade)

);
create table prepaidamounts(

accountnumber bigint unique not null,
prepaidbytes integer,
cascade varchar(200),
primary key(accountnumber, cascade)

);
create table accountstatus(

accountnumber bigint,
statuscode integer

);

or use the prepared script: psql -U aiuser -d aidb < mixtables.sql
To confirm the creation of the database, log into your newly created database by typing
psql -U aiuser -d aidb. If it worked, log out again using \q.

Version: 3.10 Development Environment _ v310.odt Page: 40

Project AN.ON
Development Environment

If connecting to the database does not work, try editing the hba.conf file (under linux,
usually in /etc/postgresql, or in your postgres data directory) to allow connecting with
a password. Example:
All other connections by UNIX sockets
local all all password
All IPv4 connections from localhost
host all all 127.0.0.1 255.255.255.255 ident password
Note that Postgres looks only for the first line matching a connection in pg_hba.conf
After editing hba_conf, you need to restart postgres using pg_ctl reload (usally found
in /usr/lib/postgresql/bin)

10.5 Payment Configuration

Use the Mixconfig tool. When editing the xml configuration file by hand, the relevant sec-
tions can be found under <Accounting>

General Options
SoftLimit Minimum amount of prepaid bytes at which

a cost confirmation is demanded from the
JAP

HardLimit The JAP will be kicked out if the number of
prepaid bytes drops to this level. Obviously,
needs to be set LOWER than SoftLimit.
WARNING: A distance between SoftLimit
and HardLimit of at least 400 000 is recom-
mended to give Jap enough time to reply
with a CC even when surfing fast

SettleInterval Interval in seconds: How often you want to
contact the payment instance to cash in the
cost confirmations received from JAPs

PrepaidIntervalKbytes How many kilobytes are paid in advance, i.e.
whenever softlimit is reached, AI will request
a CC for (current transferred bytes + prepai-
dInterval)

Database options
host, port, dbname, username,password self-explanatory
Pricing
Price (shown in Mixconfig tool) NOT to be set manually; instead, use the

Mixconfig tool to use a valid, signed price
certificate. If editing manually, be sure to in-
sert the complete xml node for a price certifi-
cate, including the JPI's signature

Version: 3.10 Development Environment _ v310.odt Page: 41

Project AN.ON
Development Environment

10.6 Price Certificates

In order to set a price, you will need to:
1. Request the price

Use the MixConfigTool. Load a Mix configuration that contains your operator certificate,
which needs to be registered with the payment instance (i.e. stored in the JPI's database).
To to the payment Tab, find the “PriceCertificate” panel, click on “Change”, and enter your
new price.

2. Have the JPI's operator confirm your new price
This will be done by logging into the PIG, and signing your new price.

3. Store the signed price certificate in your Mix's configuration
In the MixConfigTool, load your Mix's configuration, go to the PriceCertificate panel on the
Payment tab, click “Update”. Select your newly signed price certificate, and click on “Use”.
Alternatively, you can edit the mixconfig-file manually. In that case, the <PriceCertificate>
node goes under <Accounting>, and the JPI's certificate needs to be written as a block (no
spaces before or after each line of the certificate).

Version: 3.10 Development Environment _ v310.odt Page: 42

Project AN.ON
Development Environment

11 Payment Instance GUI (PIG) setup
11.1 Ruby

Check if ruby is already installed by running ruby -v. If not, go to ruby-lang.org to
download and install the correct version for your operating system. Note that the version of
Ruby shipping with Mac OS X 10.4 does NOT run Rails well, installing a newer version is
required. On Debian, apt-get install ruby ri irb ruby1.8-dev libzlib-
ruby zlib1g rdoc will install Ruby 1.8
On RedHat/Fedora/CentOS, yum install ruby ruby-libs ruby-devel ruby-
rdoc ruby-irb ruby-ri ruby-docs should work.

Of course, you can also compile from the source code. Excellent instructions on how to in-
stall Ruby and Rails from source can be found at
http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx (meant for MacOS X,
but also applicable to Linux)

11.2 Rails

Rails is available as a ruby gem (Gem is the package management system for Ruby).
To install Gem, download the source code from rubygems.rubyforge.org. On Linux,
you can use wget
http://rubyforge.org/frs/download.php/17190/rubygems-0.9.2.tgz Un-
zip, and install with sudo ruby setup.rb

To install Rails, simply type sudo gem install rails --include-dependencies

In case you should get an error like “Could not find rails in any repository”, do gem list
rails –remote first. This updates the list of avaiilable packages, afterwards the regular
gem install rails command should work.

If you should have multiple versions of the rails gem installed, you have to tell your appli-
cation which one to use in config/environment.rb, e.g. RAILS_GEM_VERSION =
'1.2.1'

11.3 Database configuration

The ruby adapter for postgresql is available under http://ruby.scripting.ca/postgres.
It is also available as a gem, to install use gem install postgres.
Note that in order to compile, postgresql needs to be installed on the same machine. If
necessary, set non-standard installation directories with e.g. gem install postgres
-- --with-pgsql-include-dir=/usr/local/pgsql/include –with-pgsql-
lib-dir=/usr/local/pgsql/lib

Alternatively, a pure-ruby implementation called postgres-pr offers lower performance, but
easier installation: simply type sudo gem install postgres-pr

Version: 3.10 Development Environment _ v310.odt Page: 43

http://ruby.scripting.ca/postgres
http://ruby.scripting.ca/postgres
http://ruby.scripting.ca/postgres
http://rubyforge.org/frs/download.php/17190/rubygems-0.9.2.tgz
http://rubyforge.org/frs/download.php/17190/rubygems-0.9.2.tgz
http://rubyforge.org/frs/download.php/17190/rubygems-0.9.2.tgz
http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx
http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx

Project AN.ON
Development Environment

To configure Rails for using the correct database, edit the file database.yml in the /config
directory under the rails application's root directory.
Use the following values:
adapter: postgresql (or postgres-pr, if you went with the pure-ruby version)
database: bidb
username: biuser
password: yourpassword
host: localhost

The adapter is called “postgresql”, no matter if you use postgres or postgres-pr

Pay attention to YAML syntax! (e.g. use two spaces for indentation instead of Tabs, no su-
perfluous newlines at the end of the file)

11.4 Plugins
Run the following command to install the graphing library Scruffy:
gem install scruffy
The project's website can be found at scruffy.rubyforge.org
The other plugins should work just by copying the contents of your application folder over
to the server. To install from scratch, use
gem install login_generator
and
script/plugin install
http://svn.cardboardrocket.com/paginating_find

11.5 Java Bridge

Download YAJB from http://raa.ruby-lang.org/project/yajb.
Unzip and run ruby setup.rb to install.

Find the global variable JBRIDGE_OPTIONS in the bigui rails application (should be in
config/environment.rb, controllers/prices_controller.rb), and check
that :classpath points to the Java libraries you intend to use (at least Jap.jar and
BouncyCastleLightForJAP.jar).

Set the constant PATH_TO_JPI_CERT in controllers/prices_controller.rb to the absolute
path, including the file name, to the private key file of the JPI

11.6 Server

Go to the application's root directory, and start the integrated Webrick server with
script/server. Open your web browser and find your application at http://local-
host:3000. Use option -p to user a different port, or -e for a different environment, e.g.
script/server -p 8080 -e production

If you have problems using Webrick, try the alternative Mongrel server.
To install, type gem install mongrel (needs ruby version 1.8.4 or higher)
To start, go to the pig root directory, and type mongrel_rails start

Version: 3.10 Development Environment _ v310.odt Page: 44

http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/
http://raa.ruby-lang.org/project/yajb
http://raa.ruby-lang.org/project/yajb
http://raa.ruby-lang.org/project/yajb

Project AN.ON
Development Environment

mongrel_rails -h will output all startup options, use mongrel_rails stop to shut
the server down.

For production use (better performance, using SSL etc) , a “proper server” (i.e. Apache or
Lighttpd) is recommended.
Apache + CGI is VERY slow, a fallback option only.
Apache + FastCGI is possible, but seems to never work properly (random errors, esces-
sive database connection,...)
Lighttpd + FastCGI has not been tried yet.
Current setup is Apache for SSL with mod_proxy redirecting to Mongrel, works well.

Version: 3.10 Development Environment _ v310.odt Page: 45

Project AN.ON
Development Environment

12 Bibliography
textreference link
[ANON] http://www.anon-online.de
[CPPUNIT] http://cppunit.sourceforge.net
[JUNIT] http://www.junit.org
[PRICHTLINIEN] http://anon.inf.tu-dresden.de/develop/codingstyle_de.html
[UNITTESTS] Johannes Link: Unit Tests mit Java, dpunkt.verlag, 1.Auflage 2002

http://www.dpunkt.de/utmj/
[DIPLOBAIER] Tobias Baier: Fertigstellung und Inbetriebnahme eines Bezahlsystems

für den AN.ON-Anonymisierungsdienst (Diplomarbeit)
[DIPLOSCHRAM
L]

Elmar Schraml: Technische und organisatorische Fertisgstellung eines
Bezahlsystems für den Internet-Anonymisiserungsdienst AN.ON und
Überführung in die Produktivphase (Diplomarbeit)

Version: 3.10 Development Environment _ v310.odt Page: 46

http://www.dpunkt.de/utmj/
http://anon.inf.tu-dresden.de/develop/codingstyle_de.html
http://www.junit.org/
http://cppunit.sourceforge.net/
http://www.anon-online.de/

	1Introduction
	2Components
	2.1Mix (CVS-module: proxytest)
	2.2JAP client (CVS-module: Jap)
	2.3InfoService (CVS-module: Jap)
	2.4Payment Instance (CVS-module: Jap)
	2.5MixConfig tool (CVS-module: MixConfig)
	2.6Java Mix (CVS-module: JavaMix)
	2.7Anon library

	3External libraries
	3.1Java library installation
	3.2C++ library installation on Linux
	3.3C++ library installation on Windows
	3.3.1Xerces-C
	3.3.2OpenSSL
	3.3.3CppUnit
	3.3.4zLib (Windows)
	3.3.5pthreads (Windows)
	3.3.6Setting the path variables

	4Compiler
	4.1C++
	4.2Java

	5IDEs
	5.1Specific development requirements on Microsoft Windows
	5.1.1Installation of Cygwin
	5.1.2Setting up a CVS client
	5.1.4C++ development using Visual Studio 2003 .NET

	5.2Eclipse IDE
	5.2.1Java Runtime Environment
	5.2.2IDE installation
	5.2.3Configuration for Java sub-projects
	5.2.4Configuration for C++ sub-project 'proxytest'

	5.3Borland JBuilder IDE
	5.3.1Download and Installation
	5.3.2Programmstart
	5.3.3CVS Checkout
	5.3.4Formatting Options
	5.3.5Compiler integration
	5.3.6Integrating the libraries
	5.3.7Compilation
	5.3.8Ausführen

	6Doxygen
	6.1Download
	6.2Installation

	7Unittest environments
	7.1JUnit
	7.2CppUnit

	8Running the tests
	8.1Architecture
	8.2Configuration
	8.2.1Config files
	8.2.2InfoService
	8.2.3Mix cascade
	8.2.4Apache HTTP Server (version 1.3.x oder 2.x)
	8.2.5JAP
	8.2.6Web browser

	8.3Start
	8.4Test

	9Payment Instance Setup
	9.1System requirements:
	9.2You will need:
	9.3Creating the Jar file
	1.Do a rebuild

	9.4Creating the key file and certificate
	9.5Creating the Postgres database
	9.6Creating the JPI configuration
	9.7Starting the JPI

	10Accounting Instance Setup
	10.1System Requirements
	10.2You will need
	10.3Compiling the first Mix
	10.4Setting up the database
	10.5Payment Configuration
	10.6Price Certificates

	11Payment Instance GUI (PIG) setup
	11.1Ruby
	11.2Rails
	11.3Database configuration
	11.4Plugins
	11.5Java Bridge
	11.6Server

	12Bibliography

